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Abstract 

An approach for verifying Reynolds-Averaged Navier-Stokes (RANS) turbulence 
models in Computational Fluid Dynamics (CFD) codes is presented. This approach relies 
on smooth, non-physical Manufactured Solutions which are chosen so as to provide 
contributions from all of the terms in the turbulence transport equations including 
convection, diffusion, production, and destruction. The Loci-CHEM CFD code is 
employed to solve the steady-state, compressible RANS equations in two-dimensions. The 
turbulence model verified is the baseline version of Menter’s k-ω model. Special attention 
is paid to the blending function which allows the model to switch between a k-ω and a 
transformed k-ε model. Results are presented for the observed order of accuracy on 
families of Cartesian structured grids, skewed curvilinear structured grids, and 
unstructured triangular grids. The Manufactured Solutions clearly identify problems on 
skewed meshes which cause the diffusion operator to become inconsistent (i.e., the 
discretization error does not decrease with mesh refinement). An alternative formulation 
for the diffusion operator is implemented and the Manufactured Solutions are shown to 
converge in a second-order manner with mesh refinement for the structured grids. 
Preliminary investigations on the unstructured meshes indicate that while the code is still 
consistent, the observed order of accuracy is reduced to first order. 

 
Nomenclature 

ωkCD  cross-diffusion term in the turbulence frequency transport equation 

pc  specific heat at constant pressure 

vc  specific heat at constant volume 

kDE  discretization error on mesh level k; k=1,2,3,… 
d  normal distance to the nearest no-slip wall 
e  Favre-averaged internal energy 

te  Favre-averaged total energy 
F  Menter blending function 

1F  Menter blending function for the baseline model 

exactf  exact solution to the partial differential equations 

kf  numerical solution to the partial differential equations on mesh level k; k=1,2,3,… 
h  Favre-averaged enthalpy 

fh  heat of formation 
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th  Favre-averaged total enthalpy 

refh  reference heat of formation; Jhref 0.0=  

kh  measure of the element size on mesh level k; k=1,2,3,… 

pg  coefficient of the leading error term  
k  turbulent kinetic energy 
L  reference length 
N  number of cells 
n  one half the number of fully-excited molecular energy modes; n = 5/2 
P  turbulence production term 
p  Favre-averaged pressure, also observed order of accuracy 
Pr  laminar Prandtl number 

TPr  turbulent Prandtl number 

iLq  laminar heat flux vector 

iTq  turbulent heat flux vector 
R  specific gas constant 
r  ratio of coarse to fine grid element size 
T  Favre-averaged temperature 

refT  reference temperature; KTref 298=   

ijt  laminar stress tensor 
u , v  Cartesian velocity components  
x , y  Cartesian coordinates 
ρ  Reynolds-averaged density  

ijτ  turbulent stress tensor for the mean flow equations 

ijτ ′  full compressible turbulent stress tensor 
μ  laminar absolute viscosity 

Tμ  turbulent absolute viscosity 
ω  turbulence frequency 

I. Introduction 
OMPUTATIONAL Fluid Dynamics, or CFD, is playing an ever-increasing role in the design, analysis, and 
optimization of aerospace systems. It is therefore critical that decision makers have confidence in the 

correctness of the CFD predictions. Verification and validation are a set of formal procedures by which one builds 
confidence in the results of models and simulations, including CFD.1 Verification addresses the mathematical 
correctness of the simulations, while validation addresses the physical correctness of the underlying models and 
equations through comparisons with experimental data. This paper addresses aspects of the mathematical 
correctness of CFD simulations, i.e., verification. 

There are two fundamental aspects to verification: code verification and solution verification.2,3 Code 
verification is the process of ensuring, to the degree possible, that there are no mistakes (bugs) in a computer code or 
inconsistencies in the solution algorithm. Current practices in code verification verify that the observed order of 
accuracy asymptotically approaches the formal order of accuracy of the discretization scheme as the mesh is refined. 
This procedure thus requires the existence of an exact solution to the governing equations which, ideally, exercises 
all of the terms in the equations. Solution verification is the process of estimating the three types of numerical error 
that occur in every numerical simulation: round-off error, iterative error, and discretization error.  

One of the chief difficulties in verifying a code is identifying exact solutions to the governing equations which 
exercise all terms in the equations. Traditional exact solutions exist only when the governing equations are fairly 
simple, which is certainly not the case for modern CFD codes which are expected to handle complex physics 
(turbulence, combustion, real gas effects, etc.), complex geometries, and significant nonlinearities. The Method of 
Manufactured Solutions, or MMS, is a general and very powerful approach to code verification.2,3 Rather than trying 
to find an exact solution to a system of partial differential equations, the goal is to “manufacture” an exact solution 
to a slightly modified set of equations. For code verification purposes, it is not required (in fact, often not desirable) 
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that the Manufactured Solution be related to a physically realistic problem; recall that verification deals only with 
the mathematics of a given problem. The general concept behind MMS is to choose the solution a priori, then 
operate the governing partial differential equations onto the chosen solution, thereby generating analytical source 
terms which require no discretization. The chosen (manufactured) solution is then the exact solution to the modified 
governing equations made up of the original equations plus the analytical source terms. Thus, MMS involves the 
solution to the backward problem: given an original set of equations and a chosen solution, find a modified set of 
equations that the chosen solution will satisfy. The initial and boundary conditions are then determined from the 
Manufactured Solution. 

The first application of MMS for code verification was by Roache and Steinberg in 1984.4 In their pioneering 
work, they used the MMS approach to verify a code for generating three-dimensional transformations for elliptic 
partial differential equations. Additional discussions of the MMS procedure for code verification procedure have 
been presented by Roache.2,5 The book by Knupp and Salari6 is a comprehensive discussion of code verification, 
MMS, and order of accuracy verification.  

MMS has been used to verify two compressible CFD codes7: Premo8 (developed by Sandia National 
Laboratories) and WIND9 (developed by the NPARC alliance). In this work, the authors successfully verified both 
the inviscid Euler equations and the laminar Navier-Stokes equations; however, this study employed only Cartesian 
grids. An alternative statistical approach to MMS was proposed by Hebert and Luke10 for the Loci-CHEM 
combusting CFD code,11 which is also the subject of the current paper. In their approach, they employ a single grid 
level which is shrunk down (thus providing a locally refined grid) and used to statistically sample the discretization 
error in different regions of the domain of interest. Their work successfully verified the Loci-CHEM CFD code for 
the 3D, multi-species, laminar Navier-Stokes equations using both statistical and traditional MMS.  

While MMS has begun to see widespread use for code verification of laminar CFD codes, only a handful of 
researchers have recently begun to address CFD codes with Reynolds-Averaged Navier-Stokes (RANS) turbulence 
models. These RANS turbulence models provide additional challenges for MMS for a number of reasons. First, they 
typically contain strong, highly-nonlinear source terms. Second, when physically-based Manufactured Solutions are 
employed which mimic actual near-wall turbulence, some turbulence quantities exhibit singular behavior (e.g., the 
wall-limiting behavior of the turbulence frequency ω often varies as the inverse of the wall distance squared and is 
thus infinite at the wall). Third, turbulence models often employ min or max functions to switch from one behavior 
to another, thus leading to “kinks” in the source terms since these functions are not continuously differentiable. Even 
when a turbulence model does not employ such functions, they are often found in the discrete implementation of a 
turbulence model such as the common practice of limiting the turbulence production to some multiple of the 
dissipation rate, although such ad hoc modifications are rarely discussed in the literature.  

There have been two coordinated efforts to apply MMS to turbulent flows. Pelletier and co-workers have 
summarized their work on 2D incompressible turbulent shear layers using a finite element code with a focus on a 
logarithmic form of the k-ε two-equation RANS model in Refs. 12 and 13. They employed Manufactured Solutions 
which mimic turbulent shear flows, with the turbulent kinetic energy and the turbulent eddy viscosity as the two 
quantities specified in the Manufactured Solution. For the cases examined, they were able to verify the code by 
reproducing the formal order of accuracy of the code. More recently, Eca and co-workers have published a series of 
papers on Manufactured Solutions for the 2D incompressible turbulent Navier-Stokes equations.14-16 They also 
employed physically-based Manufactured Solutions, in this case mimicking wall-bounded turbulent flow. This 
group looked at both finite-difference and finite-volume discretizations, and examined a number of turbulence 
models including the Spalart-Allmaras one-equation model17 and two two-equation models: Menter’s baseline 
(BSL) version k-ω model18 and Kok’s turbulent/non-turbulent k-ω model.19 While successful in some cases, their 
physically-based Manufactured Solution often led to numerical instabilities, a reduction in the observed grid 
convergence rate, or even inconsistency of the numerical scheme (i.e., the discretization error did not decrease as the 
grid was refined). In order to independently test different aspects of the governing equations, in some cases they 
replaced certain discretized terms (or even whole equations) with the analytic counterpart from the Manufactured 
Solution. For the Spalart-Allmaras model they specified the working variable tν~ , while for the two equation models 
they specified both the turbulent eddy viscosity and the turbulent kinetic energy. The cases they examined employed 
a Reynolds number of 106 and used Cartesian grids which were clustered in the y-direction towards the wall. 

Our approach to code verification for RANS models differs from the previous work in a number of ways. While 
the earlier work focused on physically-based solutions with complex exponentials to mimic the turbulence quantities 
found in real turbulent flows, we simply use sinusoidal functions. Our argument for taking this approach is that the 
goal of code verification is to perform mathematical tests to ensure the discretization approach and the 
implementation into a code does in fact match the original governing partial differential equations and their solution. 
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The prior work allowed solutions which could select different branches of the min and max functions in different 
spatial regions, thus leading to slope discontinuities in some of the turbulence parameters and source terms. In some 
cases, they even removed the min and max functions altogether from the governing equations. Our approach selects 
manufactured solutions and assigned wall distance functions which, although not physically realistic, will only 
activate one branch of the min and max functions for a given Manufactured Solution. Finally, the previous work 
examined different equations or terms separately by replacing certain terms or equations with their analytical 
counterpart; whereas we simply turn off certain terms in both the numerical code and the manufactured solution to 
focus on different parts of the equations.  

II. Governing Equations 
The CFD code employed in the current work is called Loci-CHEM11 and was developed at Mississippi State 

University. Loci-CHEM was developed using the Loci framework20 and can simulate three-dimensional flows of 
turbulent, chemically-reacting mixtures of thermally perfect gases. It is a library of Loci rules that consists of 
reusable rules that can be dynamically reconfigured to solve a variety of problems. Two major advantages of the 
Loci framework are that it doesn’t allow dependencies on uninitialized variables (one of the most common dynamic 
faults in software engineering) and it automatically handles domain decomposition and parallelization. Our current 
efforts consider only two-dimensional steady flows of a perfect gas. The turbulence model to be verified is the 
Baseline (BSL) version of Menter’s k-ω model. This model combines the accuracy of the k-ω model for wall-
bounded flows with the standard k-ε model for free shear flows, thus removing the k-ω model’s dependence on the 
freestream ω value.  

A. Flow equations 

The 2D, steady-state, Favre-averaged Navier-Stokes equations21 can be written as 
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where tij is the laminar stress tensor given by 
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and τij is the turbulent stress tensor which is modeled for the mean flow equations as: 
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The turbulent heat flux terms are 
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and the total energy and enthalpy are 
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where 

fhnRTe +=      and     ( ) fhRTnh ++= 1 . 
The perfect gas equation of state is assumed  

RTp ρ=  
and the heat of formation and excited energy mode parameter can be found via 

( ) refreff RTnhh 1+−=      and     
R
c

n v=  

where we have used 0=refh , refT = 298 K, and n = 5/2. 

B. Turbulence Equations 

The turbulence model examined in this work is the baseline (BSL) version of Menter’s two-equation k-ω 
model.18 One of the chief difficulties in verifying Menter’s model is in the handling of the blending function F and 
the various min and max functions that arise in the model. The general form for the transport of the turbulent 
kinetic energy (k) and the turbulence frequency (ω) for compressible flow are: 
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The turbulence production term is given by 
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where the full compressible turbulent stress tensor is used: 
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For the BSL Menter model, the turbulent viscosity is given by 

ωρμ /kT =  
where the closure coefficients are found by combining the coefficients from the k-ω and k-ε models as 
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In the BSL model, the blending function is given by 
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and d is the distance to the nearest no-slip wall. 

III. Manufactured Solutions 

A. Methodology 

The most rigorous code verification test is the order of accuracy test,2,6 which determines whether of not the 
discretization error is reduced at the expected rate. This test is equivalent to determining whether the observed order 
of accuracy matches the formal order of accuracy. For finite-difference and finite-volume methods, the formal order 
of accuracy is obtained from a truncation error analysis of the discretization algorithm, while for finite-element 
methods it is found from interpolation theory. Most production-level CFD codes are formally second-order accurate; 
although in some cases the formal order is reduced to first order in order to ensure solution robustness. In cases 
where laminar instabilities, turbulence, or acoustics are simulated, higher-order methods are often needed. 

The observed order of accuracy is the accuracy that is directly computed from code output for a given simulation 
or set of simulations. The observed order of accuracy can be adversely affected by mistakes in the computer code, 
defective numerical algorithms, solutions which are not sufficiently smooth, and numerical solutions which are not 
in the asymptotic grid convergence range.3 The asymptotic range is defined as the range of discretization sizes (Δx, 
Δy, Δt, etc.) where the lowest-order terms in the truncation error dominate.  

We will now consider a method for calculating the observed order of accuracy assuming that the exact solution 
is known, which is the currently accepted approach for code verification. The discretization error is formally defined 
as the difference between the exact solution to the discrete equations and the exact (continuum) solution to the 
governing partial differential equations fexact. Since the exact solution to the discrete equations (which will be 
different on different mesh levels) is generally not known, the numerical solution on the same mesh level is 
substituted in its place (note that this implies that the round-off and iterative error can be neglected). Consider a 
series expansion of the discretization error in terms of hk, a measure of the element size on mesh level k 

HOThgffDE p
kpexactkk +=−=            (4) 

where fk is the numerical solution on mesh k, gp is the coefficient of the leading error term, and p is the observed 
order of accuracy. The main assumption is that the higher-order terms (HOT) are negligible, which is equivalent to 
saying the solutions are in the asymptotic range. In this case, we can write the discretization error equation for a fine 
mesh (k = 1) and a coarse mesh (k = 2) as 

p
pexact hgffDE 111 =−=        and       p

pexact hgffDE 222 =−=  
Since the exact solution is known, these two equations can be solved for the observed order of accuracy p. 
Introducing r, the ratio of coarse to fine grid element spacing (r = h2/h1), the observed order of accuracy becomes: 
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Thus, when the exact solution is known, only two solutions are required to obtain the observed order of accuracy. 
The observed order of accuracy can be evaluated either locally within the solution domain or globally by employing 
a norm of the discretization error. While we have examined L1, L2, and L∞ norms for the current code verification 
study, here we report only L2 norms for brevity. The discrete L2 norm for mesh level k is defined as 
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where the i  index denotes a cell center value of one of the conserved variables [ρ, ρu, ρv, ρet, ρk, ρω].  
When evaluating the observed order of accuracy, round-off and iterative convergence error can adversely affect 

the results. Round-off error occurs due to finite digit storage on digital computers. Iterative error occurs any time an 
iterative method is used, as is generally the case for nonlinear systems and large, sparse linear systems. The 
discretized form of nonlinear equations can generally be solved to within machine round-off error; however, in 
practice, the iterative procedure is usually terminated earlier to reduce computational effort. In order to ensure that 
these sources of error do not adversely impact the order of accuracy calculation,3 both round-off and iterative error 
should be at least 100 times smaller than the discretization error (i.e., < 0.01×DE). For all cases presented herein, 
double precision computations are used and the residuals (a measure of the iterative error) are reduced down to 
machine zero. For the flow equations, this corresponds to a residual reduction of approximately 14 orders of 
magnitude, while for the turbulence equations, a reduction of only 9 orders of magnitude was observed.  

B. Baseline Manufactured Solutions 

In all of the current work, we adhere to the philosophy that code verification is simply a mathematical test to 
ensure the numerical solution truly represents the solution to the continuum mathematical equations that are being 
solved. As such, we have specifically chosen Manufactured Solutions which are not physically realistic, but which 
are simple, smooth, and exercise all terms in the governing equations. The Manufactured Solutions employed here 
all take the following form 
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where φ = [ρ, u, v, p, k, ω]T represents any of the primitive variables and the fs(⋅) functions represent sine or cosine 
functions. The baseline Manufactured Solutions for the primitive variables are shown below in Figure 1. The 
specific values for the constants in the above equation are given in the Appendix. 

 

a)           b)           c) 

d)           e)           f) 

Figure 1 Manufactured Solution for the primitive variables: a) density, b) x-component of velocity, c) y-
component of velocity, d) pressure, e) turbulent kinetic energy, and f) turbulence frequency. 
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C. Source Terms 

The manufactured source terms for the basic flow equations will be presented in a future paper. The source terms 
for the BSL version of Menter’s k-ω turbulence model with and infinite wall distance giving F1 = 0 (i.e., the k-ε 
model) are presented below in Figure 2a-b. These source terms exhibit smooth variations in both the x and y 
directions. Source terms were also generated for the case where the wall distance was set to a constant value of 
1×10-6 m over the entire domain. This case corresponds to setting F1 = 1 (i.e., the k-ω model) and the source terms 
are presented in Figure 2c-d. While the source term for the k-equation shows little change, the source term for the ω-
equation shows some differences due to the wall distance being set to a small number.  

 

 

 
a)                 b)   

 
c)                 d)   

Figure 2 Manufactured Solution source terms for Menter’s BSL turbulence model: a) k-equation source term 
assuming infinite wall distance (i.e., k-ε model), b) ω-equation source term assuming infinite wall distance (i.e., 

k-ε model), c) k-equation source term assuming d = 1×10-6 m (i.e., k-ω model), b) ω-equation source term 
assuming d = 1×10-6 m (i.e., k-ω model). 



 
American Institute of Aeronautics and Astronautics 

 

9

D. Ratios of Source Terms 

Rather than generate complex, physically-realistic Manufactured Solutions, we have chosen here to employ non-
physical solutions. One of our goals in this process was to generate Manufactured Solutions for the turbulence 
equations such that all of the terms in the turbulence models were roughly the same order of magnitude over some 
significant region of the domain. We confirm that we have achieved terms which are the same order of magnitude 
by plotting contours of the ratios of different source terms versus the destruction terms (e.g., ρk/ω for the k-
equation). The actual destruction term in the k-equation is plotted in Figure 3a along with the ratios of the other 
terms (convections, diffusion, and production) to the destruction term in Figure 3b-d. It is clear that for at least some 
region of the domain these source terms are roughly the same order of magnitude. Similar source term ratios for the 
ω-equation are presented in Figure 4a-e. 

 
 

a)                 b) 

 
c)                 d) 

Figure 3 Source term magnitudes for the turbulent kinetic energy equation: a) actual destruction term 
magnitude, b) ratio of convection terms to the destruction term, c) ratio of diffusion terms to the destruction 

term, and d) ratio of the production term to the destruction term. 
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IV. Grids  
In order to verify all mesh transformations (either local or global) are coded correctly, the Manufactured 

Solutions should be run on the most general grid types that will be used by analysts. Grids with excessive skewness, 
high aspect ratio cells, or large stretching factors should not be used as these grids are likely to lead to a reduction in 
the observed order of accuracy. However, mild skewness, aspect ratio, and stretching should be examined to ensure 
the underlying grid transformations are correct. In this section, we present some typical structured and unstructured 
grid topologies that have been tested. While grids shown tend to be relatively coarse grids, the structured grids 
employed in this work ranged in size from 8×8 cells to 512×512 cells, with the coarser grids being found by 
removing every other grid line to ensure uniform coarsening over the domain. The unstructured grids were generated 
by starting with a given structured grid level and adding diagonals to each structured cell through various strategies 
to make the grid unstructured. The importance of having families of grids to test which have been uniformly refined 
over the entire domain with similar topologies can not be overstated.  

A. Structured Grid Topologies 

A number of different structured grid families were examined ranging from true Cartesian to curvilinear with 
skewness, nonunity aspect ratio, and grid stretching. Examples of these grid topologies are presented in Figure 5. 
The stretched Cartesian mesh can be used to isolate out the effects of grid stretching and aspect ratio, the curvilinear 
(or doughnut) grid can be used to test the effects of curved boundaries without the presence of skewness or 
stretching, and the skewed curvilinear grid tests all effects on a single grid type.  

 
 

a)           b)           c) 

 
d)           e)             

Figure 4 Source term magnitudes for the turbulence frequency equation: a) actual destruction term magnitude, 
b) ratio of convection terms to the destruction term, c) ratio of diffusion terms to the destruction term, d) ratio of 

the production term to the destruction term, and e) ratio of cross-diffusion term to the destruction term. 
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B. Unstructured Grid Topologies 

As discussed earlier, the unstructured grids are formed by taking a grid level from the structured grid topologies 
and then adding in diagonals to convert quadrilateral cells to triangular cells. Examples of some different strategies 
for adding in these diagonals are given in Figure 6. While all of the unstructured grids shown are based on the 
Cartesian structured grid, they could just as easily be based on one of the other structured grid topologies.  

  
 
 

 
a)               b) 

 
c) d) 

 

Figure 5 Examples of structured grid topologies examined: a) Cartesian, b) stretched Cartesian, c) 
curvilinear, and d) skewed curvilinear. 
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V. Code Verification Results 

A. Laminar Flows 

Before getting into the verification of the RANS model, we first performed some initial testing on laminar flows 
using the skewed curvilinear structured mesh from Figure 5d. For these cases we solved the 2D steady laminar 
Navier-Stokes equation as given earlier, but with μT = 0. The Manufactured Solution was the same form as that 
given in Figure 1, but with the constants slightly modified. The order of accuracy results for this case as a function 
of the element size parameter h (see Figure 7a) show that the numerical solutions become inconsistent as the mesh is 
refined, i.e., the discretization error does not decrease with mesh refinement. Note that h = 1 (left side of the plot) 
represents a fine grid of 256×256 cells used in the order of accuracy calculation. Earlier testing of the Euler 
equations (i.e., turning off the viscous terms) showed that code was producing an order of accuracy of two for this 
case, thus suggesting that the problems were in the diffusion terms.  

 
a)               b) 

 
c) d) 

 

Figure 6 Examples of Cartesian grid-based unstructured grid topologies examined: a) unidirectional 
diagonal, b) bidiagonal, c) alternating diagonal, and d) hybrid structured-unstructured with 

unidirectional diagonal. 
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In the diffusion operator, gradients are required at the cell faces to compute the viscous fluxes. Since 

unstructured finite-volume CFD codes typically compute and store gradients at the cell centers, a mechanism for 
obtaining gradients at the faces is required. The Loci-CHEM code calculates the gradient at the face by computing 
both normal and tangential components of the gradient. The original formulation for calculating the normal 
component of the face gradient utilized the strategy suggested by Strang et al.22 for the Cobalt 60 code. This 
approach effectively neglects a term in the normal gradient which can lead to stencils with negative weights (which 
affect the code’s stability). Luke23 has modified the normal gradient calculation such that a limiter is applied to the 
offending term that both maintains second-order accuracy in smooth regions of the flow and ensures a positive 
stencil. See Reference 23 for more details. Code verification results for the laminar Navier-Stokes equations using 
this new diffusion operator are presented in Figure 7b showing that the order of accuracy indeed asymptotes to two.  

B. Menter BSL Model on the Cartesian Grid 

Results for the Menter BSL model are first presented with the wall distance d set to infinity. For this case, the 
blending function F1 = 0 and the model defaults to the transformed k-ε model. The order of accuracy as a function of 
element size parameter h is presented in Figure 8a and shows that the formal order of accuracy of two is indeed 
matched. Results for the Menter BSL model with d = 1×10-6 m are presented in Figure 8b. This choice for the wall 
distance value results in the blending function F1 = 1 over the entire domain, thus giving the original k-ω model.  

 

 
 a)               b) 

Figure 7  Order of accuracy for the laminar Navier-Stokes equations on the skewed curvilinear mesh: 
a) original diffusion operator and b) new diffusion operator.  

 
 a)               b) 

Figure 8 Order of accuracy results for the Menter BSL turbulence model on the Cartesian grid with: a) the 
transformed k-ε model (F1 = 0) and b) the k-ω model (F1 = 1). 
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C. Menter BSL Model on the Skewed Curvilinear Grid 

Code verification results for the Menter BSL model are now presented on the skewed curvilinear grid from 
Figure 5d. The results for the case where the wall distance is set to infinity (F1 = 0, or the transformed k-ε model) are 
given in Figure 9a. The order of accuracy asymptotically approaches the formal order of two as the meshes are 
refined towards the 512×512 cell mesh. Figure 9b shows the results for the case where the wall distance is set to d = 
1×10-6 m (F1 = 1, or the k-ω model). Again, the order of accuracy approaches two as the mesh is refined.  

 

D. Unstructured Cartesian-Based Bidiagonal Grid  

We have also performed some preliminary investigations into the performance of the Loci-CHEM code on the 
Cartesian-based unstructured bidiagonal mesh given in Figure 6b. Inviscid results for the Euler equations (with no 
diffusion terms or turbulence transport equations) show that the convective terms are indeed second-order accurate, 
as presented in Figure 10a. However, code verification studies of the laminar Navier-Stokes equations (Figure 10b) 
and the Menter BSL model with the wall distance set to infinity (Figure 10c) both show that the diffusion operator is 
only first order accurate on this Cartesian-based unstructured bidiagonal grid. 

 
 Insight into the reason for the reduced order of accuracy can sometimes be found by examining the local 
discretization errors. The local error in the primitive variables for the laminar Navier-Stokes case are presented in 
Figure 11. The pressure and density have the largest percentage discretization error near the top boundary, while the 
velocity components show larger error in the domain. The reasons for the reduced order of accuracy on these 
unstructured meshes is still under investigation. 

 
 a)           b)           c) 

Figure 10 Order of accuracy on the Cartesian-based unstructured bidiagonal grid: a) Euler equations, b) 
laminar Navier-Stokes equations, and c) Menter BSL turbulence model with the transformed k-ε model (F1 = 0).

 
 a)             b)  

Figure 9 Order of accuracy results for the Menter BSL turbulence model on the skewed curvilinear grid 
with: a) the transformed k-ε model (F1 = 0) and b) the k-ω model (F1 = 1). 
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VI. Conclusions 
An approach for performing code verification studies on RANS turbulence models was presented which relies on 

smooth, non-physical Manufactured Solutions which exercise all terms in the turbulence transport equations. This 
approach has been applied to the Loci-CHEM CFD code for the baseline Menter k-ω turbulence model. The 
turbulence transport equations, along with the Reynolds-averaged Navier-Stokes equations, have been verified in the 
Loci-CHEM CFD code by computing the observed order of accuracy for the Manufactured Solution on a series of 
consistently-refined grids. For the structured grid topologies examined (Cartesian and skewed curvilinear) the 
observed order of accuracy matched the formal order of two. For the unstructured bidiagonal grid examined, the 
observed order of accuracy was found to reduce to first order. Manufactured Solutions for the Euler equations and 
the laminar Navier-Stokes equations suggest that the source of this reduced order of accuracy is the diffusion 
operator on unstructured grids.  
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Appendix: Coefficients in the Manufactured Solutions 
 The constants used in the Menter BSL manufactured solution (Equation 6) are give in Table A1.  
 
Table A1. Constants for Menter BSL turbulence model Manufactured Solution 

 

Equation, φ φ 0 φx   φy φxy aφx aφy aφxy 
ρ (kg/m3) 1 0.15 -0.1 0.08 0.75 1 1.25 
u (m/s) 70 7 -8 5.5 1.5 1.5 0.6 
v (m/s) 90 -5 10 -11 1.5 1 0.9 
p (N/m2) 1×105 0.2×105 0.175×105 -0.25×105 1 1.25 0.75 
k (m2/s2) 780 160 -120 80 0.65 0.7 0.8 
ω (1/s) 150 -30 22.5 40 0.75 0.875 0.6 
 


